Missouri State University > PAM Dept. > Astronomy > OAAC Sunday, Nov 23, 2014   HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">
<html><head>
<title>302 Found</title>
</head><body>
<h1>Found</h1>
<p>The document has moved <a href="http://w1.weather.gov/xml/current_obs/KSGF.xml">here</a>.</p>
<hr>
<address>Apache/2.2.15 (Red Hat) Server at www.weather.gov Port 80</address>
</body   °F  
  Home
  Forums
  Members
  Images
  Papers
  AstroInfo
  Links
  Log In
Mission:
The purpose of the Ozarks Amateur Astronomers Club is to create and foster public interest in astronomy through presentations and public observing nights.
April 29th 2011 NASA Open House

NASA observing night will be on Friday, April 29th, 2011, from 8:00 P.M. to 10:30 P.M., weather permitting. This is a wonderful opportunity to do some amazing observing under a dark sky! You will also have an opportunity to look through one of the university’s larger telescopes!

NASA Night is also one of our biggest fundraising nights, so if anyone is interested in briefly helping out, please let Kevin know. See this link for directions: - NASA Observing Night - - kevcollette

 

News
April 1st, 2011 - Observing Night and Club Meeting
We will be heading to Baker Observatory Friday night, April 1st, for a club observing night. We will be meeting there at the observatory at 8:00 PM but in anyone needs a ride let me know in advance so I can make sure we have enough cars available. I will be picking up those needing a ride from in front of Kemper Hall at 7:15 and leaving by 7:25. Those needing help finding Baker Observatory can follow me out from there. - Scott

 

Baker Observatory Clear Sky Chart:
This is an astronomers forecast showing when it will be cloudy or clear for the next two days at Baker Observatory. Clicking the image will take you to the image host along with more detailed information and forecasts.

 

NASA Watch - More HSPD-12 Abuses at JPL
   
NASA Image of the Day
Image of the Day" image. The Soyuz TMA-15M spacecraft is rolled out to the launch pad by train on Friday, Nov. 21, 2014 at the Baikonur Cosmodrome in Kazakhstan.  Launch of the Soyuz rocket is scheduled for Nov. 24 and will carry Expedition 42 Soyuz Commander Anton Shkaplerov of the Russian Federal Space Agency (Roscosmos), Flight Engineer Terry Virts of NASA , and Flight Engineer Samantha Cristoforetti of the European Space Agency into orbit to begin their five and a half month mission on the International Space Station. Image Credit: NASA/Aubrey Gemignani On Nov. 20, 2004, NASA's Swift spacecraft lifted off aboard a Boeing Delta II rocket from Cape Canaveral Air Force Station, Fla., beginning its mission to study gamma-ray bursts and identify their origins. Gamma-ray bursts are the most luminous explosions in the cosmos. Most are thought to be triggered when the core of a massive star runs out of nuclear fuel, collapses under its own weight, and forms a black hole. The black hole then drives jets of particles that drill all the way through the collapsing star and erupt into space at nearly the speed of light. Astronomers at NASA and Pennsylvania State University used Swift to create the most detailed ultraviolet light surveys ever of the Large and Small Magellanic Clouds, the two closest major galaxies. Nearly a million ultraviolet sources appear in this mosaic of the Large Magellanic Cloud, which was assembled from 2,200 images taken by Swift's Ultraviolet/Optical Telescope (UVOT) and released on June 3, 2013. The 160-megapixel image required a cumulative exposure of 5.4 days. The image includes light from 1,600 to 3,300 angstroms -- UV wavelengths largely blocked by Earth's atmosphere -- and has an angular resolution of 2.5 arcseconds at full size. The Large Magellanic Cloud is about 14,000 light-years across. Viewing in the ultraviolet allows astronomers to suppress the light of normal stars like the sun, which are not very bright at such higher energies, and provides a clearer picture of the hottest stars and star-formation regions. No telescope other than UVOT can produce such high-resolution wide-field multicolor surveys in the ultraviolet. Pennsylvania State University manages the Swift Mission Operations Center, which controls Swift's science and flight operations. Goddard manages Swift, which was launched in November 2004. The satellite is operated in collaboration with Penn State, the Los Alamos National Laboratory in New Mexico and Orbital Sciences Corp. in Dulles, Va. International collaborators are in the United Kingdom and Italy, and the mission includes contributions from Germany and Japan. Image Credit: NASA/Swift/S. Immler (Goddard) and M. Siegel (Penn State) A long observation with Chandra of the supernova remnant MSH 11-62 reveals an irregular shell of hot gas, shown in red, surrounding an extended nebula of high energy X-rays, shown in blue. Even though scientists have yet to detect any pulsations from the central object within MSH 11-62, the structure around it has many of the same characteristics as other pulsar wind nebulas. The reverse shock and other, secondary shocks within MSH 11-62 appear to have begun to crush the pulsar wind nebula, possibly contributing to its elongated shape. (Note: the orientation of this image has been rotated by 24 degrees so that north is pointed to the upper left.) Image credit:  NASA/CXC/SAO/P. Slane et al. › Read feature NASA's green aviation project is one step closer to developing technology that could make future airliners quieter and more fuel-efficient with the successful flight test of a wing surface that can change shape in flight. This past summer, researchers replaced an airplane’s conventional aluminum flaps with advanced, shape-changing assemblies that form seamless bendable and twistable surfaces. Flight testing will determine whether flexible trailing-edge wing flaps are a viable approach to improve aerodynamic efficiency and reduce noise generated during takeoffs and landings. For the initial Adaptive Compliant Trailing Edge (ACTE) flight, shown in this image, the experimental control surfaces were locked at a specified setting. Varied flap settings on subsequent tests will demonstrate the capability of the flexible surfaces under actual flight conditions. ACTE technology is expected to have far-reaching effects on future aviation. Advanced lightweight materials will reduce wing structural weight and give engineers the ability to aerodynamically tailor the wings to promote improved fuel economy and more efficient operations, while reducing environmental impacts. > More: NASA Tests Revolutionary Shape Changing Aircraft Flap for the First Time Image Credit: NASA/Ken Ulbrich Nature is an artist, and this time she seems to have let her paints swirl together a bit. What the viewer might perceive to be Saturn's surface is really just the tops of its uppermost cloud layers. Everything we see is the result of fluid dynamics. Astronomers study Saturn's cloud dynamics in part to test and improve our understanding of fluid flows. Hopefully, what we learn will be useful for understanding our own atmosphere and that of other planetary bodies. This view looks toward the sunlit side of the rings from about 25 degrees above the ringplane. The image was taken in red light with the Cassini spacecraft narrow-angle camera on Aug. 23, 2014. The view was acquired at a distance of approximately 1.1 million miles (1.8 million kilometers) from Saturn and at a Sun-Saturn-spacecraft, or phase, angle of 127 degrees. Image scale is 7 miles (11 kilometers) per pixel. The Cassini-Huygens mission is a cooperative project of NASA, the European Space Agency and the Italian Space Agency. The Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the mission for NASA's Science Mission Directorate, Washington, D.C. The Cassini orbiter and its two onboard cameras were designed, developed and assembled at JPL. The imaging operations center is based at the Space Science Institute in Boulder, Colo. For more information about the Cassini-Huygens mission visit http://www.nasa.gov/cassini and http://saturn.jpl.nasa.gov . The Cassini imaging team homepage is at http://ciclops.org . Credit: NASA/JPL-Caltech/Space Science Institute A new book released this week highlights how the view from space with Earth-orbiting sensors is being used to protect some of the world’s most interesting, changing, and threatened places. From space, Egmont National Park in New Zealand shows the benefits and limitations of protected areas. In this Landsat 8 image acquired on July 3, 2014, the park, with Mt. Taranaki at its center, was established in 1900. This isolated island of protected forest (dark green areas) is surrounded by once-forested pasturelands (light and brown green). “Sanctuary: Exploring the World’s Protected Areas from Space,” published by the Institute for Global Environmental Strategies (Arlington, Virginia) with support from NASA, debuted at the 2014 World Parks Congress in Sydney, Australia. In the book’s foreword, NASA Administrator Charles Bolden writes, “NASA and numerous other space agency partners from around the globe have used this view from space to make incredible scientific advances in our understanding of how our planet works. As a result, we can now better gauge the impact of human activity on our environment and measure how and why our atmosphere, oceans, and land are changing. As a former astronaut who has looked upon our beautiful planet from space, I hope that we can advance the use of space-based remote sensing and other geospatial tools to study, understand, and improve the management of the world’s parks and protected areas as well as the precious biodiversity that thrives within their borders.” Image Credit: NASA/USGS The Philae lander of the European Space Agency's Rosetta mission is safely on the surface of Comet 67P/Churyumov-Gerasimenko, as these first two images from the lander's CIVA camera confirm. One of the lander’s three feet can be seen in the foreground. The view is a two-image mosaic taken on Nov. 12, 2014. The lander separated from the orbiter at 09:03 UTC (1:03 a.m. PST) for touch down on comet 67P seven hours later. Rosetta and Philae had been riding through space together for more than 10 years. Philae is the first probe to achieve soft landing on a comet, and Rosetta is the first to rendezvous with a comet and follow it around the sun. The information collected by Philae at one location on the surface will complement that collected by the Rosetta orbiter for the entire comet. Rosetta is a European Space Agency mission with contributions from its member states and NASA. Rosetta's Philae lander is provided by a consortium led by the German Aerospace Center, Cologne; Max Planck Institute for Solar System Research, Gottingen; French National Space Agency, Paris; and the Italian Space Agency, Rome. NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology, Pasadena, manages the U.S. participation in the Rosetta mission for NASA's Science Mission Directorate in Washington.  Rosetta carries three NASA instruments in its 21-instrument payload. For more information on the U.S. instruments aboard Rosetta, visit: http://rosetta.jpl.nasa.gov . For more information about Rosetta, visit http://www.esa.int/rosetta . Copyright: ESA/Rosetta/Philae/CIVA At NASA's Kennedy Space Center in Florida, the agency's Orion spacecraft passes the spaceport's iconic Vehicle Assembly Building as it is transported to Launch Complex 37 at Cape Canaveral Air Force Station on the evening of Tuesday, Nov. 11, 2014. After arrival at the launch pad, United Launch Alliance engineers and technicians will lift Orion and mount it atop its Delta IV Heavy rocket. Orion began its journey to the launch pad at at the Launch Abort System Facility, where a 52-foot-tall protective fairing and the launch abort system were attached to the 10-foot, 11-inch-tall crew module. Resting atop a specialized Kamag transporter, Orion was moved to Space Launch Complex 37B at Cape Canaveral Air Force Station. The move began at 8:54 p.m. EST and concluded at 3:07 a.m., Wednesday, Nov. 12. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. Orion is scheduled to launch Dec. 4, 2014 atop a United Launch Alliance Delta IV Heavy rocket in its first unpiloted flight test, and in 2018 on NASA’s Space Launch System rocket. > More about Orion Image Credit: NASA/Kim Shiflett Expedition 41 Flight Engineer Alexander Gerst of the European Space Agency (ESA), left, Commander Max Suraev of the Russian Federal Space Agency (Roscosmos), center, and NASA Flight Engineer Reid Wiseman, sit in chairs outside the Soyuz TMA-13M capsule just minutes after they landed in a remote area near the town of Arkalyk, Kazakhstan on Monday, Nov. 10, 2014. Suraev, Wiseman and Gerst returned to Earth after more than five months onboard the International Space Station where they served as members of the Expedition 40 and 41 crews.  Image Credit: NASA/Bill Ingalls NASA astronaut Reid Wiseman shared this image of Yellowstone via his twitter account this morning. Wiseman later tweeted: "We cranked up our #Soyuz this morning and test fired all the thrusters. Everything worked flawlessly - ready for a Sunday departure." - @astro_reid The homebound Expedition 40/41 trio, consisting of Soyuz Commander Max Suraev and Flight Engineers Alexander Gerst and Wiseman, is counting down to its Nov. 9 departure inside the Soyuz TMA-13M spacecraft. They are packing gear to be returned home while they continue science and maintenance on the U.S. side of the International Space Station. Back on Earth, the new Expedition 42/43 crew is getting ready for its launch to the space station from the Baikonur Cosmodrome in Kazakhstan on Nov. 23. Soyuz Commander Anton Shkaplerov will be joined by NASA astronaut Terry Virts and European Space Agency astronaut Samantha Cristoforetti aboard a Soyuz TMA-15M spacecraft to begin a 5-1/2 month mission aboard the orbital laboratory. Space Station Blog Image Credit: NASA/Reid Wiseman An active region on the sun emitted a mid-level solar flare, peaking at 4:47 a.m. EST on Nov. 5, 2014. This is the second mid-level flare from the same active region, labeled AR 12205, which rotated over the left limb of the sun on Nov. 3. The image was captured by NASA's Solar Dynamics Observatory (SDO) in extreme ultraviolet light that was colorized in red and gold. Solar flares are powerful bursts of radiation. Harmful radiation from a flare cannot pass through Earth's atmosphere to physically affect humans on the ground, however -- when intense enough -- they can disturb the atmosphere in the layer where GPS and communications signals travel. This flare is classified as an M7.9-class flare. M-class flares are a tenth the size of the most intense flares, the X-class flares. The number provides more information about its strength. An M2 is twice as intense as an M1, an M3 is three times as intense, etc. More information on NASA's SDO Mission. Image Credit: NASA/SDO On Dec. 4, Orion is scheduled to launch atop a United Launch Alliance Delta IV Heavy rocket from Cape Canaveral Air Force Station’s Space Launch Complex 37 in Florida. During the test, Orion will travel 3,600 miles in altitude above Earth. 4 1/2 hours later, the spacecraft will reenter the atmosphere at 20,000 mph and splash down in the Pacific Ocean. Orion’s first flight will verify launch and high-speed reentry systems such as avionics, attitude control, parachutes and the heat shield. Four recently-installed protective panels make up Orion's Ogive. The Ogive reduces drag and acoustic load on the crew module, making it a smoother ride for the spacecraft. Pictured here, inside the Launch Abort System Facility at NASA’s Kennedy Space Center in Florida, a crane brings the fourth and final Ogive panel closer for installation on Orion's Launch Abort System. The Ogive installation was one of the last pieces of the puzzle for Orion prior to its move to the launch pad on Nov. 10. There, it will be lifted and attached to the rocket for its December launch. More on Orion. Image Credit: NASA A potent weather system with origins in Manitoba, Canada moved south across the Great Lakes on Halloween and blew all the way to Florida, bringing snow and hard frost to regions that do not see either in some winters. The storm system then moved back up the U.S. East Coast and pounded New England with a Nor'easter. This image shows the southern Appalachian Mountain range, along the border of Tennessee, North Carolina, and South Carolina, as fall color was turned to winter white. The natural-color image was acquired by the Visible Infrared Imaging Radiometer Suite on the Suomi NPP satellite on Nov. 2, 2014. Six inches of snow fell in Asheville, North Carolina, where snow usually doesn't fall before Christmas. Higher in the mountains, near Gatlinburg, Tennessee, LeConte Lodge (elevation 6400 feet) reported 22 inches of snow and temperatures of 9 degrees Fahrenheit. In Columbia, South Carolina, measurable snow fell nine days earlier than ever recorded for that city. More information. Image Credit: NASA Earth Observatory Glaciers and mountains in the evening sun are seen on an Operation IceBridge research flight, returning from West Antarctica on Oct. 29, 2014. NASA is carrying out its sixth consecutive year of Operation IceBridge research flights over Antarctica to study changes in the continent’s ice sheet, glaciers and sea ice. This year’s airborne campaign revisits a section of the Antarctic ice sheet that recently was found to be in irreversible decline. IceBridge uses a suite of instruments that includes a laser altimeter, radar instruments, cameras, and a gravimeter, which is an instrument that detects small changes in gravity. These small changes reveal how much mass these glaciers have lost. Researchers plan to measure previously unsurveyed regions of Antarctica, such as the upper portions of Smith Glacier in West Antarctica, which is thinning faster than any other glaciers in the region. The mission also plans to collect data in portions of the Antarctic Peninsula, such as the Larsen C, George VI and Wilkins ice shelves and the glaciers that drain into them. The Antarctic Peninsula has been warming faster than the rest of the continent. In addition to extending the data record of NASA’s Ice, Cloud and Land Elevation Satellite (ICESat), which stopped collecting data in 2009, IceBridge will also help set the stage for ICESat-2 by measuring ice the satellite will fly over. > Operation IceBridge Antarctic 2014 Campaign Image Credit: NASA/Michael Studinger This near-infrared, color mosaic from NASA's Cassini spacecraft shows the sun glinting off of Titan's north polar seas. While Cassini has captured, separately, views of the polar seas (see PIA17470) and the sun glinting off of them (see PIA12481 and PIA18433) in the past, this is the first time both have been seen together in the same view. The sunglint, also called a specular reflection, is the bright area near the 11 o'clock position at upper left. This mirror-like reflection, known as the specular point, is in the south of Titan's largest sea, Kraken Mare, just north of an island archipelago separating two separate parts of the sea. This particular sunglint was so bright as to saturate the detector of Cassini's Visual and Infrared Mapping Spectrometer (VIMS) instrument, which captures the view. It is also the sunglint seen with the highest observation elevation so far -- the sun was a full 40 degrees above the horizon as seen from Kraken Mare at this time -- much higher than the 22 degrees seen in PIA18433. Because it was so bright, this glint was visible through the haze at much lower wavelengths than before, down to 1.3 microns. The southern portion of Kraken Mare (the area surrounding the specular feature toward upper left) displays a "bathtub ring" -- a bright margin of evaporate deposits -- which indicates that the sea was larger at some point in the past and has become smaller due to evaporation. The deposits are material left behind after the methane & ethane liquid evaporates, somewhat akin to the saline crust on a salt flat. The highest resolution data from this flyby -- the area seen immediately to the right of the sunglint -- cover the labyrinth of channels that connect Kraken Mare to another large sea, Ligeia Mare. Ligeia Mare itself is partially covered in its northern reaches by a bright, arrow-shaped complex of clouds. The clouds are made of liquid methane droplets, and could be actively refilling the lakes with rainfall. The view was acquired during Cassini's August 21, 2014, flyby of Titan, also referred to as "T104" by the Cassini team. The view contains real color information, although it is not the natural color the human eye would see. Here, red in the image corresponds to 5.0 microns, green to 2.0 microns, and blue to 1.3 microns. These wavelengths correspond to atmospheric windows through which Titan's surface is visible. The unaided human eye would see nothing but haze, as in PIA12528. The Cassini-Huygens mission is a cooperative project of NASA, the European Space Agency and the Italian Space Agency. JPL, a division of the California Institute of Technology, Pasadena, manages the mission for NASA's Science Mission Directorate in Washington. The VIMS team is based at the University of Arizona in Tucson. More information about Cassini is available at http://www.nasa.gov/cassini and http://saturn.jpl.nasa.gov. Image Credit: NASA/JPL-Caltech/University of Arizona/University of Idaho This Chandra X-ray Observatory image of the Hydra A galaxy cluster was taken on Oct. 30, 1999, with the Advanced CCD Imaging Spectrometer (ACIS) in an observation that lasted about six hours. Hydra A is a galaxy cluster that is 840 million light years from Earth. The cluster gets its name from the strong radio source, Hydra A, that originates in a galaxy near the center of the cluster. Optical observations show a few hundred galaxies in the cluster. Chandra X-ray observations reveal a large cloud of hot gas that extends throughout the cluster. The gas cloud is several million light years across and has a temperature of about 40 million degrees in the outer parts decreasing to about 35 million degrees in the inner region. NASA's Chandra X-ray Observatory was launched into space fifteen years ago aboard the Space Shuttle Columbia. Since its deployment on July 23, 1999, Chandra has helped revolutionize our understanding of the universe through its unrivaled X-ray vision. Chandra, one of NASA's current "Great Observatories," along with the Hubble Space Telescope and Spitzer Space Telescope, is specially designed to detect X-ray emission from hot and energetic regions of the universe. Image Credit: NASA/CXC/SAO NASA astronaut Reid Wiseman posted this image of a sunrise, captured from the International Space Station, to social media on Oct. 29, 2014. Wiseman wrote, "Not every day is easy. Yesterday was a tough one. #sunrise" Wiseman was referring to the loss on Oct. 28 of the Orbital Sciences Corporation Antares rocket and Cygnus spacecraft, moments after launch at NASA's Wallops Flight Facility in Virginia. The Cygnus spacecraft was filled with about 5,000 pounds of supplies slated for the International Space Station, including science experiments, experiment hardware, spare parts, and crew provisions. The station crew is in no danger of running out of food or other critical supplies. Image Credit: NASA/Reid Wiseman The Flight Loads Laboratory at NASA's Armstrong Flight Research Center is celebrating 50 years. It sprang into existence during the era of the X-15 rocket plane and the YF-12 and SR-71 Blackbirds, and was dedicated to testing the latest in high-speed flight. In this image from 1971, the YF-12 forebody's radiant heating system is being tested at the Flight Loads Laboratory under conditions experienced at Mach 3, or three times the speed of sound, over 2,000 miles an hour. Eventually the entire airframe was tested in the lab, always with the goal to collect data, validate parts and reduce risk to the aircraft and the pilots who flew them. Image credit: NASA Read More About the Flight Loads Laboratory Anniversary Read About Modern Aeronautics Testing in the Flight Loads Laboratory This trick that the planet is looking back at you is actually a Hubble treat: An eerie, close-up view of Jupiter, the biggest planet in our solar system. Hubble was monitoring changes in Jupiter’s immense Great Red Spot (GRS) storm on April 21, 2014, when the shadow of the Jovian moon, Ganymede, swept across the center of the storm. This gave the giant planet the uncanny appearance of having a pupil in the center of a 10,000 mile-diameter “eye.” For a moment, Jupiter “stared” back at Hubble like a one-eyed giant Cyclops. Click on the image to view Jupiter from a distance. Image Credit: NASA/ESA/A. Simon (Goddard Space Flight Center) Caption: Ray Villard, Space Science Telescope Institute Acknowledgment: C. Go and the Hubble Heritage Team (STScI/AURA) The Orbital Sciences Corporation Antares rocket, with the Cygnus spacecraft onboard, is seen on launch Pad-0A, Sunday, Oct. 26, 2014, at NASA's Wallops Flight Facility in Virginia. The Antares will launch with the Cygnus spacecraft filled with over 5,000 pounds of supplies for the International Space Station, including science experiments, experiment hardware, spare parts, and crew provisions. The Orbital-3 mission is Orbital Sciences' third contracted cargo delivery flight to the space station for NASA. Launch is scheduled for Monday, Oct. 27 at 6:45 p.m. EDT. > Latest: Orbital Launch Blog Image Credit: NASA/Joel Kowsky The Orbital Sciences Corporation Antares rocket, with the Cygnus spacecraft onboard, is seen on launch Pad-0A during sunrise, Sunday, Oct. 26, 2014, at NASA's Wallops Flight Facility in Virginia. The Antares will launch with the Cygnus spacecraft filled with over 5,000 pounds of supplies for the International Space Station, including science experiments, experiment hardware, spare parts, and crew provisions. The Orbital-3 mission is Orbital Sciences' third contracted cargo delivery flight to the space station for NASA. Launch is scheduled for Monday, Oct. 27 at 6:45 p.m. EDT. Image Credit: NASA/Joel Kowsky A partial solar eclipse was visible from much of North America before sundown on Thursday, Oct.23. A partial eclipse occurs when the moon blocks a portion of the sun from view. The Hinode spacecraft captured images of yesterday’s eclipse as it passed over North America using its X-ray Telescope.  During the eclipse, the new moon eased across the sun from right to left with the Sun shining brilliantly in the background.  And as a stroke of good luck, this solar cycle’s largest active region, which has been the source of several large flares over the past week, was centered on the sun’s disk as the moon transited! Hinode is in the eighth year of its mission to observe the sun. Previously, Hinode has observed numerous eclipses due to its high-altitude, sun-synchronous orbit.  As viewed from Hinode’s vantage point in space, this eclipse was annular instead of partial, which means that the entire moon moved in front of the sun but did not cover it completely.  In this situation, a ring of the sun encircles the dark disk of the moon. Led by the Japan Aerospace Exploration Agency (JAXA), the Hinode mission is a collaboration between the space agencies of Japan, the United States, the United Kingdom and Europe. NASA helped in the development, funding and assembly of the spacecraft's three science instruments. Hinode is part of the Solar Terrestrial Probes (STP) Program within the Heliophysics Division of NASA's Science Mission Directorate in Washington. NASA's Marshall Space Flight Center in Huntsville, Ala., manages the Hinode science operations. The Smithsonian Astrophysical Observatory is the lead U.S. investigator for the X-ray telescope. Image Credit: NASA/JAXA/SAO; Prepared by: Dr. David McKenzie, Montana State University Pareidolia is the psychological phenomenon where people see recognizable shapes in clouds, rock formations, or otherwise unrelated objects or data. There are many examples of this phenomenon on Earth and in space. When an image from NASA's Chandra X-ray Observatory of PSR B1509-58 -- a spinning neutron star surrounded by a cloud of energetic particles --was released in 2009, it quickly gained attention because many saw a hand-like structure in the X-ray emission. In a new image of the system, X-rays from Chandra in gold are seen along with infrared data from NASA's Wide-field Infrared Survey Explorer (WISE) telescope in red, green and blue. Pareidolia may strike again as some people report seeing a shape of a face in WISE's infrared data. What do you see? NASA's Nuclear Spectroscopic Telescope Array, or NuSTAR, also took a picture of the neutron star nebula in 2014, using higher-energy X-rays than Chandra. PSR B1509-58 is about 17,000 light-years from Earth. JPL, a division of the California Institute of Technology in Pasadena, manages the WISE mission for NASA.  NASA's Marshall Space Flight Center in Huntsville, Alabama, manages the Chandra program for. The Smithsonian Astrophysical Observatory in Cambridge, Massachusetts, controls Chandra's science and flight operations. Image Credit: X-ray: NASA/CXC/SAO; Infrared: NASA/JPL-Caltech After 116 days of being subjected to extremely frigid temperatures like that in space, the heart of the James Webb Space Telescope, the Integrated Science Instrument Module (ISIM) and its sensitive instruments, emerged unscathed from the thermal vacuum chamber at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. The Webb telescope's images will reveal the first galaxies forming 13.5 billion years ago. The telescope will also pierce through interstellar dust clouds to capture stars and planets forming in our own galaxy. At the telescope's final destination in space, one million miles away from Earth, it will operate at incredibly cold temperatures of -387 degrees Fahrenheit, or 40 degrees Kelvin. This is 260 degrees Fahrenheit colder than any place on the Earth’s surface has ever been. To create temperatures that cold on Earth, the team uses the massive thermal vacuum chamber at Goddard called the Space Environment Simulator, or SES, that duplicates the vacuum and extreme temperatures of space. This 40-foot-tall, 27-foot-diameter cylindrical chamber eliminates the tiniest trace of air with vacuum pumps and uses liquid nitrogen and even colder liquid helium to drop the temperature simulating the space environment. The James Webb Space Telescope is the scientific successor to NASA's Hubble Space Telescope. It will be the most powerful space telescope ever built. Webb is an international project led by NASA with its partners, the European Space Agency and the Canadian Space Agency. > More: NASA Webb's Heart Survives Deep Freeze Test Image Credit: NASA/Chris Gunn The brightly glowing plumes seen in this image are reminiscent of an underwater scene, with turquoise-tinted currents and nebulous strands reaching out into the surroundings. However, this is no ocean. This image actually shows part of the Large Magellanic Cloud (LMC), a small nearby galaxy that orbits our galaxy, the Milky Way, and appears as a blurred blob in our skies. The NASA/European Space Agency (ESA) Hubble Space Telescope has peeked many times into this galaxy, releasing stunning images of the whirling clouds of gas and sparkling stars (opo9944a, heic1301, potw1408a). This image shows part of the Tarantula Nebula's outskirts. This famously beautiful nebula, located within the LMC, is a frequent target for Hubble (heic1206, heic1402).  In most images of the LMC the color is completely different to that seen here. This is because, in this new image, a different set of filters was used. The customary R filter, which selects the red light, was replaced by a filter letting through the near-infrared light. In traditional images, the hydrogen gas appears pink because it shines most brightly in the red. Here however, other less prominent emission lines dominate in the blue and green filters. This data is part of the Archival Pure Parallel Project (APPP), a project that gathered together and processed over 1,000 images taken using Hubble’s Wide Field Planetary Camera 2, obtained in parallel with other Hubble instruments. Much of the data in the project could be used to study a wide range of astronomical topics, including gravitational lensing and cosmic shear, exploring distant star-forming galaxies, supplementing observations in other wavelength ranges with optical data, and examining star populations from stellar heavyweights all the way down to solar-mass stars. Image Credit: ESA/Hubble & NASA: acknowledgement: Josh Barrington Text: European Space Agency The sun emitted a significant solar flare on Oct. 19, 2014, peaking at 1:01 a.m. EDT. NASA's Solar Dynamics Observatory, which is always observing the sun, captured this image of the event in extreme ultraviolet wavelength of 131 Angstroms – a wavelength that can see the intense heat of a flare and that is typically colorized in teal. This flare is classified as an X1.1-class flare. X-class denotes the most intense flares, while the number provides more information about its strength. An X2 flare is twice as intense as an X1, and an X3 is three times as intense. Solar flares are powerful bursts of radiation. Harmful radiation from a flare cannot pass through Earth's atmosphere to physically affect humans on the ground, however -- when intense enough -- they can disturb the atmosphere in the layer where GPS and communications signals travel. > More: NASA's SDO Observes an X-class Solar Flare Image Credit: NASA/Solar Dynamics Observatory This image of Hurricane Gonzalo was taken from the International Space Station by European Space Agency astronaut Alexander Gerst on Oct. 16, 2014. In addition to the crew Earth observations from the space station, NASA and NOAA satellites have been providing continuous coverage of Hurricane Gonzalo as it moves toward Bermuda. > NASA Hurricane: Gonzalo (Atlantic Ocean) Image Credit: Alexander Gerst/ESA/NASA In May 2014, two new studies concluded that a section of the land-based West Antarctic ice sheet had reached a point of inevitable collapse. Meanwhile, fresh observations from September 2014 showed sea ice around Antarctica had reached its greatest extent since the late 1970s. To better understand such dynamic and dramatic differences in the region's land and sea ice, researchers are travelling south to Antarctica this month for the sixth campaign of NASA’s Operation IceBridge. The airborne campaign, which also flies each year over Greenland, makes annual surveys of the ice with instrumented research aircraft. Instruments range from lasers that map the elevation of the ice surface, radars that "see" below it, and downward looking cameras to provide a natural-color perspective. The Digital Mapping System (DMS) camera acquired the above photo during the mission’s first science flight on October 16, 2009. At the time of the image, the DC-8 aircraft was flying at an altitude of 515 meters (1,700 feet) over heavily compacted first-year sea ice along the edge of the Amundsen Sea. Since that first flight, much has been gleaned from IceBridge data. For example, images from an IceBridge flight in October 2011 revealed a massive crack running about 29 kilometers (18 miles) across the floating tongue of Antarctica's Pine Island Glacier. The crack ultimately led to a 725-square-kilometer (280-square-mile) iceberg. In 2012, IceBridge data was a key part of a new map of Antarctica called Bedmap2. By combining surface elevation, ice thickness, and bedrock topography, Bedmap2 gives a clearer picture of Antarctica from the ice surface down to the land surface. Discoveries have been made in Greenland, too, including the identification of a 740-kilometer-long (460-mile-long) mega canyon below the ice sheet. Repeated measurements of land and sea ice from aircraft extend the record of observations once made by NASA’s Ice, Cloud, and Land Elevation Satellite, or ICESat, which stopped functioning in 2009. In addition to extending the ICESat record, IceBridge also sets the stage for ICESat-2, which is scheduled for launch in 2017. > NASA's Earth Observatory: Operation IceBridge Turns Five Image Credit: IceBridge DMS L0 Raw Imagery courtesy of the Digital Mapping System (DMS) team/NASA DAAC at the National Snow and Ice Data Center Caption: Kathryn Hansen Flight Engineers Reid Wiseman (right) and Barry Wilmore spent most of the day on Tuesday, Oct. 14 completing preparations for their 6 ½-hour Oct. 15 spacewalk. The two astronauts set up their spacesuits and tools in the equipment lock of the Quest airlock. Flight Engineer Alexander Gerst of the European Space Agency, who is coordinating spacewalk activities from inside the station, joined Wiseman and Wilmore for a review of spacewalk procedures. During today’s spacewalk, the astronauts will venture out to the starboard truss of the station to remove and replace a power regulator known as a sequential shunt unit, which failed back in mid-May. The two spacewalkers also will move TV and camera equipment in preparation for the relocation of the Leonardo Permanent Multipurpose Module to accommodate the installation of new docking adapters for future commercial crew vehicles. This photo was taken on Oct. 1, 2014. Image Credit: NASA Like a drop of dew hanging on a leaf, Tethys appears to be stuck to the A and F rings from this perspective. Tethys (660 miles, or 1,062 kilometers across), like the ring particles, is composed primarily of ice. The gap in the A ring through which Tethys is visible is the Keeler gap, which is kept clear by the small moon Daphnis (not visible here). This view looks toward the Saturn-facing hemisphere of Tethys. North on Tethys is up and rotated 43 degrees to the right. The image was taken in visible light with the Cassini spacecraft narrow-angle camera on July 14, 2014. The view was acquired at a distance of approximately 1.1 million miles (1.8 million kilometers) from Tethys and at a Sun-Tethys-spacecraft, or phase, angle of 22 degrees. Image scale is 7 miles (11 kilometers) per pixel. The Cassini-Huygens mission is a cooperative project of NASA, the European Space Agency and the Italian Space Agency. The Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the mission for NASA's Science Mission Directorate, Washington, D.C. The Cassini orbiter and its two onboard cameras were designed, developed and assembled at JPL. The imaging operations center is based at the Space Science Institute in Boulder, Colo. For more information about the Cassini-Huygens mission visit http://www.nasa.gov/cassini and http://saturn.jpl.nasa.gov . The Cassini imaging team homepage is at http://ciclops.org . Credit: NASA/JPL-Caltech/Space Science Institute
   

Last Updated March 15th, 2008 by Scott Maasen CETsr. 2008 Ozarks Amateur Astronomers Club. All Rights Reserved.